PULMONARY HYPERTENSION: NEW THERAPIES

NICHOLAS S. HILL, MD

PROFESSOR OF MEDICINE
TUFTS MEDICAL CENTER
BOSTON, MA

NICHOLAS S. HILL, M.D. is Chief of the Division of Pulmonary, Critical Care and Sleep Medicine at Tufts Medical Center in Boston and Professor of Medicine at Tufts University School of Medicine. He received his M.D. from Dartmouth Medical School in 1975. He did his internship and residency in Medicine at Tufts-New England Medical Center. He did a fellowship in Cardiovascular Medicine at the University of Massachusetts Medical Center and in Pulmonary Medicine at Boston University School of Medicine. He is Board Certified in Internal Medicine, Pulmonary Diseases, and Critical Care Medicine. He has done extensive research and writing in the fields of noninvasive ventilation and pulmonary hypertension dating back over 30 years. He has edited several books related to these topics. He established the Pulmonary Hypertension Center at Tufts Medical Center. He is a Past President of the American Thoracic Society and has received a Distinguished Scholar Award in Critical Care from the Chest Foundation of the American College of Chest Physicians as well an Award for Excellence in Pulmonary Hypertension Care from the Pulmonary Hypertension Association. He has served on the Board of Directors of NAMDRC in the past and is an avid triathlete.

OBJECTIVES:
Participants should be better able to:

1. Review current approach to PAH management;
2. Discuss findings re new drugs and approaches;
3. Make recommendations on new pharmacotherapies to treat PH.

THURSDAY, MARCH 3, 2016 9:30 AM
Dr. Hill has received research grants from Actelion, Bayer, Gilead Reata and United Therapeutics and serves as a consultant for Actelion, Bayer and Gilead, but these do not create a conflict related to the following presentation.
Disclosures

Research Grants:
- Actelion, Inc
- Bayer, Inc
-- Gilead, Inc
-- Lung Biotechnology
- Pfizer, Inc
- Reata, Inc
- United Therapeutics, Inc

Advisory Boards
- Actelion
- Bayer, Inc
- Gilead, Inc
- Pfizer, Inc

Lecture Outline

• Brief Update
 – Epidemiology, Definition and Classification
 – Diagnostics – Group 1 v Group 2
• The right ventricle in PAH
• Evidence-based treatment
• Combination therapy
• Ongoing research
Epidemiology and History of PAH

- Prevalence in the U.S.
 - ≈ 50,000 to 100,000 (15,000 to 25,000 diagnosed and treated)
- Circa 1987
 - Due to rapid progression of morbidity and mortality, once patients were diagnosed with pulmonary hypertension they were described as entering “the kingdom of the near-dead”
- 2015
 - Patient survival has dramatically improved as treatment options for PAH have increased

Definition of Pulmonary Hypertension

- General definition
 - Mean PAP ≥ 25 mm Hg at rest, measured by right heart catheterization
- Hemodynamic characterization of PAH
 - Mean PAP ≥ 25 mm Hg, PAWP ≤ 15 mm Hg, elevated PVR (> 3 Wood Units)

Pulmonary Hypertension
World Health Organization Classification

Group 1
“PAH”

Group 2
PH with Left Heart Disease (PCW > 15)

Group 3
PH with Lung Disease and/or Chronic Hypoxia

Group 4
Chronic Thromboembolic PH

Group 5
Miscellaneous (Sarcoid)

The most numerous subgroup in Group 1 PAH is:

A. Connective tissue disease-related
B. Congenital heart disease
C. Idiopathic
D. Persistent pulmonary hypertension of the newborn
E. Sickle cell disease
The most numerous subgroup in Group 1 PAH is:

A. Connective tissue disease-related
B. Congenital heart disease
C. Idiopathic
D. Persistent pulmonary hypertension of the newborn
E. Sickle cell disease

Distribution of Group 1 PAH: REVEAL Registry

N = 2967
- IPAH
- H-PAH
- CTD
- CHD
- Liver disease
- Drug-induced
- HIV
- Other

Pathology of PAH

Overview

• Obstructive lung panvasculopathy
• Prognosis is primarily determined by the functional status of the RV
• Most common cause of death is RV failure

Genetic Mutations in PAH

• BMPR2
 – Major predisposing gene
 – Over 300 mutations have been identified
 – Found in >70% of patients with H-PAH
 – Found in ≈ 20% of patients with IPAH
• ALK-1
 – Major gene when PAH is associated with hereditary hemorrhagic telangiectasia (HHT)
• Less common mutations:
 – Endoglin, SMAD9, Caveolin-1, KCNK3

Case Presentation

- 52 year-old man with twenty year hx of PAH assoc with autoimmune hepatitis. Had been stable with excellent exercise capacity (6MWD > 600 m) sildenafil 50 mg tid but now has progressive DOE and fatigue with daily activities (dressing, bathing). Recent leg swelling.
- Denied CP, palpitations, dizziness, syncope
- No HIV risk factors, ↑thyroid, diet pills, illicit drugs, hx thromboembolism
Case Presentation

- T 98.3 BP 110/80 HR 110 RR 20 98% RA
- Neck: Jugular venous pressure of 12 cm, + hepatojugular reflux
- Chest: clear
- Cor: loud P2, RV heave, 3/6 holosystolic murmur at the LLSB, no rubs or gallops
- Extremities: 3+ edema of lower legs

Echocardiography for PAH

Best Screening Tool
- Examine ECHO results for:
 - PA pressure estimate (TR jet² X 4)
 - RV size and function
 - LV size, systolic and diastolic dysfunction
 - Atrial size
 - Valvular heart disease
 - bubble study for intracardiac shunt

Diagnostic Evaluation of Patient

- Echocardiogram:
 - NI LV, RV severely dilated and hypokinetic
 - Severe RA enlargement, Mod-severe TR
 - RVSP 100 mmHg (TR jet 2 X 4)
- CXR – increased Rt Descending PA; EKG - RVH
- PFTs: ± restriction, low DLCO, ex desat 86%
- Lung scan low suspicion, neg lower extremity dopplers,
- Hct 32, +ANA; Anti-DNA, TSH, LFTs, HIV all normal,
 BNP 356 6MW distance 312 m

Our Patient
Right Heart Catheterization

<table>
<thead>
<tr>
<th></th>
<th>Systolic</th>
<th>Diastolic</th>
<th>Mean</th>
<th>O2 sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>105</td>
<td>28</td>
<td>54</td>
<td>47%</td>
</tr>
<tr>
<td>Wedge</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3.4</td>
<td>CI 1.5</td>
<td></td>
<td>PVR 862</td>
</tr>
</tbody>
</table>

- No significant change with inhaled nitric oxide
Treatment of PAH

Strategy:
- Evaluation of disease severity
- Adoption of general measures and supportive therapy
- Assessment of vasoreactivity
- Combination of different drugs and interventions

Goals of therapy:
- Improve symptoms, quality of life
- Improve hemodynamics, exercise capacity
- Prevent clinical decline
- Reduce hospitalizations
- Extend survival

General Measures and Supportive Therapy

<table>
<thead>
<tr>
<th>General Measures</th>
<th>Supportive Therapy</th>
<th>Referral to a PAH Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation / exercise</td>
<td>Anticoagulants</td>
<td>Multidisciplinary care</td>
</tr>
<tr>
<td>Psychosocial support</td>
<td>Diuretics</td>
<td>Patient and family education</td>
</tr>
<tr>
<td>Vaccinations</td>
<td>Oxygen</td>
<td>Psychosocial support</td>
</tr>
<tr>
<td>Family planning; Avoid pregnancy</td>
<td>Digoxin</td>
<td>Access to clinical trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Society participation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support Groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary Hypertension Association</td>
</tr>
</tbody>
</table>

Current PAH Treatment Algorithm

RHC with acute vasodilator challenge

- **Positive response**
 - (>20% to < 40 mm Hg)
 - Trial with oral calcium channel blocker therapy
 - Sustained response
 - Yes (7%)
 - Continue therapy

- **Negative response**
 - Lower Risk (Class II-III)
 - ERAs, PDE5 inhibitors (oral)
 - Iloprost or treprostinil (inhaled)
 - Higher Risk (Class III-IV)
 - Epoprostenol, treprostinil (IV)
 - Treprostinil (s.c)
 - Iloprost or tre (inhaled)
 - ERAs, PDE5 inhibitors (oral)

Prognostication: Determinants of Patient Risk

<table>
<thead>
<tr>
<th>Low Risk</th>
<th>Determinants of Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Clinical evidence of RV failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Gradual</td>
<td>Disease progression</td>
<td>Rapid</td>
</tr>
<tr>
<td>II, III</td>
<td>Functional class</td>
<td>III, IV</td>
</tr>
<tr>
<td>Longer (> 400 meters)</td>
<td>6-MWD</td>
<td>Shorter (< 300 meters)</td>
</tr>
<tr>
<td>Peak VO₂ > 10.4 mL/kg/min</td>
<td>CPET</td>
<td>Peak VO₂ < 10.4 mL/kg/min</td>
</tr>
<tr>
<td>Minimally elevated and stable</td>
<td>BNP / NT-proBNP</td>
<td>Significantly elevated</td>
</tr>
<tr>
<td>PaCO₂ > 34 mm Hg</td>
<td>Blood gasses</td>
<td>PaCO₂ < 32 mm Hg</td>
</tr>
<tr>
<td>Minimal RV dysfunction</td>
<td>ECHO cardiography</td>
<td>Pericardial effusion, RV dysfunction, RA enlargement</td>
</tr>
<tr>
<td>RAP < 10 mm Hg; Cl > 2.5 L/min/m²</td>
<td>Pulmonary hemodynamics</td>
<td>RAP > 20 mm Hg; Cl < 2 L/min/m²</td>
</tr>
</tbody>
</table>

• Pharmacotherapies have been approved for what Groups of PH?

A. Group 1 only
B. Groups 1 and 2
C. Groups 1, 2 and 3
D. Groups 1 and 4
Prostacyclin Analogs

<table>
<thead>
<tr>
<th></th>
<th>Epoprostenol</th>
<th>Treprostinil</th>
<th>Iloprost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication / FC</td>
<td>III, IV</td>
<td>III, IV</td>
<td>III, IV</td>
</tr>
<tr>
<td>Administration</td>
<td>Continuous IV Inhalation</td>
<td>SC Inhalation</td>
<td>Inhalation</td>
</tr>
<tr>
<td>Dosage</td>
<td>20-100 ng/kg/min</td>
<td>Initial = 1.25 ng/kg/min</td>
<td>Usual = 2.5-5 µg, 6-9 times per day</td>
</tr>
<tr>
<td>Other</td>
<td>2 branded versions available</td>
<td>Inhaled 4 times daily</td>
<td>Administer in well-ventilated areas</td>
</tr>
<tr>
<td></td>
<td>Only PAH clinical study to demonstrate survival benefit</td>
<td>Oral 3 times daily</td>
<td>Max dosage = 45 µg</td>
</tr>
</tbody>
</table>
Subcutaneous Treprostinil

Limitations of SC Treprostinil

- Site pain is major impediment
 - Affects 85%
 - Local measures
 - Topical compounds
 - NSAIDs, narcotics, gabapentin
 - All ± effective
 - Leave in “good” site
Four new PAH drugs have been introduced in the past 2 years. They:

A. Are all oral and in the same class of drug
B. Are all oral and fall into each of the 3 pathways by which previously available drugs work
C. Two are IV and 2 are oral and work by novel pathways
D. Three are oral and one is inhaled and they work by some traditional and some novel pathways
Treprostinil Oral for PAH: FREEDOM-M, C Clinical Trials

- Study design
 - RCTs M – 349 pts for 12 wks
 - C - n = 350 patients on ERA or PDE-5 inhibitor for 16 wks
- Study results
 - High discontinuation rate: 22% of treprostinil-treated patients and 14% of placebo-treated patients
 - Improvement in 6-MWD 23 m in M (p=0.0497) and did not reach statistical significance in C (11m)
 - C result thought to be due to low dose of treprostinil in short-term trial or presence of background therapy

New Oral Prostacyclin Analog Selexipag: GRIPHON Clinical Trial

RCT
- N = 1156
- Selexipag 200 to 800 µg oral twice daily
- Study duration = event driven
- Study endpoint = TTCW
- Results – reduced risk of an adverse clinical event by 39%
 - Reduced hospitalizations
 - No difference in mortality

Sitbon O et al, NEJM 2015 373:2522
Endothelin Receptor Antagonists

<table>
<thead>
<tr>
<th></th>
<th>Bosentan</th>
<th>Ambrisentan</th>
<th>Macitentan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication / FC</td>
<td>II, III, IV</td>
<td>II, III, IV</td>
<td>II, III, IV</td>
</tr>
<tr>
<td>Administration</td>
<td>Oral</td>
<td>Oral</td>
<td>Oral</td>
</tr>
<tr>
<td>Dosage</td>
<td>62.5 mg twice daily for 4 weeks then 125 mg twice daily</td>
<td>5 mg and 10 mg daily</td>
<td>10 mg daily</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Sustained receptor binding and enhanced tissue penetration</td>
<td></td>
</tr>
</tbody>
</table>

Macitentan for PAH: SERAPHIN Clinical Trial

*P < 0.05

<table>
<thead>
<tr>
<th></th>
<th>Macitentan 10 mg (N = 242)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average duration of treatment (event driven)¹</td>
<td>103.9 weeks</td>
</tr>
<tr>
<td>Risk reduction in the occurrence of morbidity and mortality events versus placebo¹</td>
<td>45%*</td>
</tr>
<tr>
<td>All-cause hospitalizations²</td>
<td>Risk reduced by 32%* and rate reduced by 33%*</td>
</tr>
<tr>
<td>PAH-related hospitalizations²</td>
<td>Risk reduced by 52%* and rate reduced by 50%*</td>
</tr>
</tbody>
</table>

SERAPHIN Trial of Macitentan
Primary endpoint: Morbidity and Mortality Events

Mechanisms of meds working on NO-cGMP Pathway
NO-cGMP Pathway Agents

<table>
<thead>
<tr>
<th></th>
<th>Sildenafil</th>
<th>Tadalafil</th>
<th>Riociguat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>PDE-5 inhibitor</td>
<td>PDE-5 inhibitor</td>
<td>Soluble guanylate cyclase stimulator</td>
</tr>
<tr>
<td>Indication / FC</td>
<td>II, III, IV</td>
<td>II, III, IV</td>
<td>II, III, IV</td>
</tr>
<tr>
<td>Administration</td>
<td>Oral, IV</td>
<td>Oral</td>
<td>Oral</td>
</tr>
<tr>
<td>Dosage</td>
<td>20 mg oral three times daily</td>
<td>40 mg daily</td>
<td>1 mg – 2.5 mg three times daily</td>
</tr>
</tbody>
</table>

Riociguat for PAH

<table>
<thead>
<tr>
<th>Clinical Study</th>
<th>Doses</th>
<th>n</th>
<th>Study Duration</th>
<th>Study Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATENT RCT</td>
<td>1 mg, 1.5 mg, 2 mg, or 2.5 mg three times daily</td>
<td>443</td>
<td>12 weeks</td>
<td>Improvements in 6-MWD (36 m), PVR, NT-proBNP, FC, Dyspnea score, QOL measures, TTCW</td>
</tr>
</tbody>
</table>

CHEST trial for Chronic Thromboembolic PH (CTEPH) — similar findings
Riociguat only drug approved for Group 4 PH

Riociguat for failing PDE5i Rx in PAH: RESPITE Clinical Trial

Study design
• Open-label
• N = 60 patients with poor response to a PDE-5i
• Study duration = 24 weeks
• Study endpoints
 – 6-MWD, cardiac index, NT-proBNP, functional class, quality of life, TTCW
• Study is ongoing

www.clinicaltrials.gov/ct2/show/NCT02007629

What about our case?

• What would be optimal PH therapy?
 Started with SQ treprostinil.
What about our case?

• Dyspnea better
• 6MWD back to 580 m NYHA Class II
• Intolerable discomfort due to site pain
• What to do now?

• Switch to oral treprostinil (Orenitram)
• Very aggressive uptitration to 10.5 mg tid
• Gradual worsening and after 3 mos represented with rt heart failure
• Placed back on IV treprostinil – added ambrisentan

Options for Patients Failing to Respond to First-Line Therapy

Functional Class III or IV (Treatment goals not met)

Combination Therapy (40%)
- Prostanoids
- Endothelin Receptor Antagonists
- PDE5 Inhibitors

Atrial septostomy and/or
Lung transplantation

Combination Therapy Trials

“Add-on” Trials

• PACES – sildenafil 80 tid added to stable eposprostenol. 26m ↑ 6MWD, slowing of clinical worsening
 – Simonneau et al AIM 2008
• STEP – inhaled iloprost added to bosentan. 26m ↑ 6MWD (p = 0.058), improved NYHA, slowed clinical worsening
 – McLaughlin et al, AJRCCM 2006

Upfront Combination Therapy: AMBITION Clinical Trial

Study design

• RCT
• n = 500 treatment-naïve Study groups
 – Ambrisentan
 – Tadalafil
 – Ambrisentan + tadalafil
• Study duration = event driven
• Primary endpoint = TTCW

Study results

• Combination therapy reduced the risk of clinical failure events by 50%
• SS* improvements in:
 – 6-MWD (50 v 25m)
 – NT-proBNP
 – % Patients with a satisfactory clinical response (39 v 29%)

Galie N et al. NEJM 2015:373:834-44.
Events in AMBITION Trial

Upfront Triple Combination Therapy

Study design
- Retrospective review
- N = 18 treatment-naïve patients in FC III or IV
- Epoprostenol + bosentan + sildenafil
- First assessment of endpoints at 4 months

Study results
- SS* improvements in
 - 6-MWD
 - Hemodynamics
- Functional class
 - Improvement to FC I or II for 17 patients
- Overall patient survival
 - 100% at 1, 2, and 3 years

New Therapeutic Approaches

• Tyrosine kinases (imatinib)
• Small molecules (microRNA, CPPs)
• Bone morphogenic protein pathway
• Other novel agents
 – Bordoxolone – agent with anti-oxidant, antiproliferative, pro-apoptotic activity
 – Apoptosis signal-regulating kinase 1 (ASK1) inhibitor trial – MAPK and P38 inh

Summary

• Earlier detection, accurate classification and assessment of severity are important
• RV impairment in PAH must be met with aggressive action towards reversal
• An evidence-based treatment algorithm provides a foundation for disease management.
• Upfront combination therapy may become the standard of care for patients.
• Treatment is suboptimal – we need to discover and evaluate new therapies in well designed clinical trials